ASSUMPTIONS:

This handout applies to LL(1) grammars G

- Upper case letters such as "A", "A", "S" represent non-terminals of G.
- Lower-case letters such as "a" represent terminals of G.
- Greek letters such as " α ", " β ", " γ " represent strings of terminals and non-terminals of G.
- ε is the null string

LL(1) FIRST SETS

Definitions

- The **First set** of a non-terminal A is the set of all terminals that can begin a string derived from A. This set will include ε if the empty string can be derived from A.
- The **First set** of a string γ of terminals and non-terminals is the set of all terminals that can begin a string derived from γ . This set will include ε if the empty string can be derived from γ .

Algorithm to calculate $First(\gamma)$ for a string γ of terminals and non-terminals

- If $\gamma = \varepsilon$, then First(γ) = { ε }
- If the first symbol in γ is a terminal a, then First(γ) = {a}
- If γ=Aγ' for some non-terminal A and (possibly empty) string γ'
 If ε∉ First(A), then First(γ) = First(A)
 - If $\varepsilon \in \text{First}(A)$, then $\text{First}(\gamma) = (\text{First}(A) \{\varepsilon\}) \cup \text{First}(\gamma')$

Algorithm to calculate First Sets for all non-terminals of G

- 1. For each non-terminal A in G, Set First(A) = {}
- 2. Order all non-terminals of G such that for each production $A \rightarrow \gamma$, γ cannot start with a non-terminal earlier in the list than A.

(This can be done using algorithm to remove left-recursion in 3-6)

3. Reversing that order,

For each rule $A \rightarrow \gamma$, set First(A) = First(A) \cup First(γ)

LL(1) FOLLOW SETS

Definition

• The Follow set of a non-terminal A is the set of all terminals that could appear right after A in a derivation. This set will include \$ if end of file can follow A.

Algorithm to calculate Follow Sets for all non-terminals of G

- 1. For each non-terminal A in G,
 - Calculate First(A)
 - Set Follow(A) = {}
- 2. Separate productions with | into sets of productions.
- 3. As much as possible, order productions of the form $A \rightarrow \alpha A'\beta$ so that productions for A are before productions for A'
- 4. Following that order,

For each rule $A \rightarrow \gamma$

For each non-terminal A' in γ such that $\gamma = \alpha A'\beta$

- If $\beta = \varepsilon$ then Follow(A') = Follow(A') \cup Follow(A)
- i.e. $A \rightarrow \alpha A'\beta$

- Otherwise
 - Follow(A') = Follow(A') \cup First(β) 0
 - If $\varepsilon \in First(\beta)$, then Follow(A') = (Follow(A') { ε }) \cup Follow(A) 0
- 5. When one operation changes a set that another set depends on, recalculate. (Alternately, don't expand Follow sets until all Follow dependencies have been identified).

LL(1) PARSE TABLES

An LL(1) parse table for G is created as follows:

- The rows of the table are labeled with G's non-terminals
- The columns of the table are labeled with G's terminals
- Each entry of the table is either empty, or contains the rhs of a production: Look at each production $A \rightarrow \gamma$
 - $\forall a \in First(\gamma) \{\varepsilon\}$ Table(A,a) = γ
 - If $\varepsilon \in First(\gamma)$, $\forall a \in Follow(A)$ $Table(A,a) = \gamma$